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a b s t r a c t 

Accurate segmentation of perivascular spaces (PVSs) is an important step for quantitative study of PVS 

morphology. However, since PVSs are the thin tubular structures with relatively low contrast and also the 

number of PVSs is often large, it is challenging and time-consuming for manual delineation of PVSs. Al- 

though several automatic/semi-automatic methods, especially the traditional learning-based approaches, 

have been proposed for segmentation of 3D PVSs, their performance often depends on the hand-crafted 

image features, as well as sophisticated preprocessing operations prior to segmentation (e.g., specially 

defined regions-of-interest (ROIs)). In this paper, a novel fully convolutional neural network (FCN) with 

no requirement of any specified hand-crafted features and ROIs is proposed for efficient segmentation 

of PVSs. Particularly, the original T2-weighted 7T magnetic resonance (MR) images are first filtered via a 

non-local Haar-transform-based line singularity representation method to enhance the thin tubular struc- 

tures. Both the original and enhanced MR images are used as multi-channel inputs to complementarily 

provide detailed image information and enhanced tubular structural information for the localization of 

PVSs. Multi-scale features are then automatically learned to characterize the spatial associations between 

PVSs and adjacent brain tissues. Finally, the produced PVS probability maps are recursively loaded into 

the network as an additional channel of inputs to provide the auxiliary contextual information for further 

refining the segmentation results. The proposed multi-channel multi-scale FCN has been evaluated on the 

7T brain MR images scanned from 20 subjects. The experimental results show its superior performance 

compared with several state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Perivascular spaces (PVSs) or Virchow-Robin spaces are the

cerebrospinal fluid (CSF)-filled cavities around the penetrating

small blood vessels in the brain ( Zhang et al., 1990 ). As a part

of the brain’s lymphatic system, the PVSs play a significant role

in clearing interstitial wastes from the brain ( Iliff et al., 2013;

Kress et al., 2014 ), as well as in regulating immunological re-

sponses ( Wuerfel et al., 2008 ). Increasing number of studies

demonstrates that the dilation of PVSs indicates neuronal dys-

functions, and strongly correlates with the incidence of multiple

neurological diseases, including Alzheimer’s disease ( Chen et al.,

2011 ), small vessel diseases ( Zhu et al., 2010 ), and multiple scle-
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osis ( Etemadifar et al., 2011 ). Thus, quantitative study of PVS mor-

hology is a pivotal pre-step to effectively analyze pathophysiolog-

cal processes of PVS abnormality, as well as to understand func-

ional status of PVSs. Although the new-generation 7T magnetic

esonance (MR) scanner facilitates the visualization of PVSs even

or healthy and young subjects, the reliable quantification of PVSs

s still a challenging task, given the fact that it is tedious and time-

onsuming for manual delineation of thin PVSs with weak signals

n noisy images (see Fig. 1 ). Therefore, it is highly desirable to de-

elop automatic methods to precisely segment PVSs in MR images.

Several automatic or semi-automatic segmentation methods

 Descombes et al., 2004; Uchiyama et al., 2008; Park et al.,

016; Zhang et al., 2017a ) have been proposed for delineation

f PVSs, among which the traditional learning-based approaches

 Park et al., 2016; Zhang et al., 2017a ) show competitive perfor-

ance due to specifically-defined image features as well as struc-

ured learning strategies. However, these traditional learning-based

ethods generally require complicated pre-processing steps before

egmentation, e.g., specifying regions-of-interest (ROIs) to guide

https://doi.org/10.1016/j.media.2018.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.02.009&domain=pdf
mailto:chunfeng_lian@med.unc.edu
mailto:dgshen@med.unc.edu
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Fig. 1. Illustration of thin and low-contrast PVSs that are manually annotated (i.e., red tubular structures) in the T2-weighted MR images. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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he segmentation procedure. Moreover, their performances are of-

en influenced by the quality of hand-crafted image features used

or MR images. 

In recent years, deep convolutional neural networks (CNNs)

ave dominated traditional learning algorithms in various natu-

al and medical image computing tasks, such as image recognition

 Krizhevsky et al., 2012; Chan et al., 2015; Simonyan and Zisser-

an, 2015; He et al., 2016 ), semantic segmentation ( Noh et al.,

015; Shelhamer et al., 2016; Liu et al., 2017a ), anatomical land-

ark detection ( Zhang et al., 2016, 2017b, 2017c ), computer-aided

iagnosis/detection ( Gao et al., 2015; Shin et al., 2016; Suk et al.,

017; Liu et al., 2017b, 2018 ), or volumetric image segmentation

 Guo et al., 2016; Rajchl et al., 2017; Chen et al., 2017; Kamnitsas

t al., 2017; Dou et al., 2017 ). As the state-of-the-art deep learn-

ng models for image segmentation, fully convolutional networks

FCNs) ( Shelhamer et al., 2016 ) can efficiently produce end-to-end

egmentation by seamlessly combining global semantic informa-

ion with local details by using advanced encoder-decoder archi-

ectures. However, existing FCN models in the literature (e.g., U-

et ( Ronneberger et al., 2015 )) usually perform segmentation by

sing only one source of information (e.g., original images), thus

gnoring the fact that the additional guidance from other comple-

entary information sources may be beneficial for improving the

egmentation results. To this end, a new multi-channel multi-scale

eep convolutional encoder-decoder network (M 

2 EDN) is proposed

n this paper for the task of PVS segmentation. A schematic dia-

ram of the proposed M 

2 EDN is shown in Fig. 2 . As an extension

f the original FCNs, the proposed method also applies volumetric

perations (i.e., convolution, pooling, and up-sampling) to achiev-

ng structured end-to-end prediction. Particularly, it adopts com-

lementary multi-channel inputs to provide both enhanced tubular

tructural information and detailed image information for precise

ocalization of PVSs. Then, high-level and multi-scale image fea-

ures are automatically learned to better characterize spatial asso-

iations between PVSs and their neighboring brain tissues. Finally,

he proposed network is effectively trained from scratch by taking

nto account the severe imbalance between PVS voxels and back-

round voxels. The output PVS probability map is further used as

uxiliary contextual information to refine the whole network for

ore accurate segmentation of PVSs. Experimental results on 7T

rain MR images from 20 subjects demonstrate superior perfor-

ance of the proposed method, compared with several state-of-

he-art methods. 

The rest of this paper is organized as follows. In Section 2 ,

revious studies that relate to our work are briefly reviewed. In

ection 3.2 , both the proposed M 

2 EDN method and the studied

ata are introduced. In Section 4 , the proposed method is com-

ared with existing PVS segmentation methods, and the role of

ach specific module of our method is analyzed. In Section 5 , we

urther discuss about the training and generalization of the pro-

osed network, as well as the limitations of its current implemen-

ation. Finally, a conclusion of this paper is presented in Section 6 .
. Related work 

Available vessel segmentation methods, i.e., learning-based ap-

roaches ( Ricci and Perfetti, 2007; Marín et al., 2011; Schneider

t al., 2015 ) and filtering methods ( Hoover et al., 20 0 0; Xiao et al.,

013; Roychowdhury et al., 2015 ), are potentially applicable to PVS

egmentation. However, direct use of these general methods in the

pecific task of PVS segmentation is challenging, especially consid-

ring that PVSs are very thin tubular structures with various di-

ections and also with lower contrast compared with surrounding

issues (see Fig. 1 ). 

Up to now, only a few automatic/semi-automatic approaches

ave been developed for PVS segmentation. These approaches can

e roughly divided into two categories: (1) unsupervised meth-

ds and (2) supervised methods. The unsupervised methods are

sually based on simple thresholding, edge detection and/or en-

ancement, and morphological operations ( Frangi et al., 1998; De-

combes et al., 2004; Uchiyama et al., 2008; Wuerfel et al., 2008 ).

or instance, Descombes et al. (2004) applied a region-growing al-

orithm to initially segment PVSs which were first detected by im-

ge filters and then segmented by the Markov chain Monte Carlo

ethod. Uchiyama et al. (2008) used an intensity thresholding

ethod to annotate PVSs in MR images, which were enhanced

y a morphological operation. In Wuerfel et al. (2008) , an adap-

ive thresholding method was integrated into a semi-automatic

oftware to delineate PVS structures. Although these unsupervised

ethods are intuitive, their performance is often limited by man-

al intermediate steps that are used to heuristically determine the

uning parameters (e.g., thresholds). In particular, these methods

o not consider the contextual knowledge on spatial locations of

VSs. 

Different from these unsupervised methods, the supervised

ethods can seamlessly include contextual information to guide

he segmentation procedure with carefully-defined image features

nd/or structured learning strategies. Currently, various supervised

earning-based methods have been proposed to segment general

essels. For example, Ricci and Perfetti (2007) adopted a specific

ine detector to extract features, based on which a support vec-

or machine (SVM) was then trained to segment vessels in reti-

al images. Schneider et al. (2015) extracted features based on

otation-invariant steerable filters, followed by construction of a

andom forest (RF) model to segment vessels in the rat visual cor-

ex images. Fraz et al. (2012) used an ensemble classifier trained

ith orientation analysis-based features to segment retinal ves-

els. In particular, several supervised learning-based approaches

ave also been proposed to automatically delineate thin PVS struc-

ures in MR images. Park et al. (2016) described local patch ap-

earance using orientation-normalized Haar features. Then, they

rained sequential RFs to perform PVS segmentation in an ROI de-

ned based on anatomical brain structures and vesselness filter-

ng ( Frangi et al., 1998 ). Zhang et al. (2017a) first adopted mul-

iple vascular filters to extract complementary vascular features
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Fig. 2. The network architecture of the proposed M 

2 EDN, which consists of an encoder sub-network and a decoder sub-network. The symbol � denotes the fusion of feature 

tensors with identical resolution. Conv: convolution; ReLU: rectified linear unit; Pool: max pooling. 
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for image voxels in the ROI, and then trained a structured RF

(SRF) model to smoothly segment PVSs via a patch-based struc-

tured prediction. Although these traditional learning-based meth-

ods have shown overall good performance, several limitations still

exist: (1) their performance often depends on the hand-crafted fea-

tures, while such features could be heterogeneous to subsequent

classification/regression models and thus may degrade the seg-

mentation performance; (2) the discriminative capacity of hand-

crafted features could be hampered by the weak signals of thin

PVSs and also by the inherent noise in MR images; (3) a carefully

defined ROI is desired (e.g., Park et al., 2016; Zhang et al., 2017a ) to

ensure effective segmentation, which inevitably increases the com-

plexity in both training and testing, since expertise knowledge is

often required to this end. 

As the state-of-the-art deep learning models for image seg-

mentation, fully convolutional networks (FCNs) ( Shelhamer et al.,

2016 ), e.g., SegNet ( Badrinarayanan et al., 2015 ) and U-Net

( Ronneberger et al., 2015 ), can efficiently produce pixel-wise dense

prediction due to their advanced encoder-decoder architectures.

Generally, an encoder-decoder architecture consists of a contract-

ing sub-network and a successive expanding sub-network. The en-

coder part (i.e., contracting sub-network) can capture long-range

cue (i.e., global contextual knowledge) by analyzing the whole

input images, while the subsequent decoder part (i.e., expand-

ing sub-network) can produce precise end-to-end segmentation

by fusing global long-range cue with complementary local details.

However, previous FCN-based methods (e.g., U-Net) usually learn

a model for segmentation using solely the original images, which

ignores critical guidance from other complementary information

sources, such as auto-contextual guidance from class confidence

(or discriminative probability) maps that are generated by initial

networks (trained using the original images) ( Tu and Bai, 2010 ). 

Similar to U-Net ( Ronneberger et al., 2015 ) and SegNet

( Badrinarayanan et al., 2015 ), the proposed M 

2 EDN is also con-
 s  
tructed by an encoder sub-network and a decoder sub-network to

apture both the global and local information of PVSs in MR im-

ges. On the other hand, it additionally owns the following unique

roperties: (1) Using the combination of different volumetric oper-

tion strategies, the complementary multi-scale image features can

e automatically learned and fused in the encoder sub-network

o comprehensively capture morphological characteristics of PVSs

nd also spatial associations between PVSs and neighboring brain

issues. (2) Considering that PVSs are the thin tubular structures

ith weak signals in the noisy MR images, two complementary

hannels of inputs are initially included in the network. Specifi-

ally, using a non-local Haar-transform-based line singularity rep-

esentation method ( Hou et al., 2017 ), one channel provides the

rocessed T2-weighted MR images with enhanced tubular struc-

ural information, but with reduced image details. In parallel, the

ther channel provides the original noisy T2-weighted MR images

ith fine local details. (3) Since PVS probability maps generated by

he network can naturally provide contextual information of PVSs

 Tu and Bai, 2010 ), we recursively incorporate these maps into the

etwork as an additional input channel to further refine the whole

odel for achieving more accurate segmentation of PVSs. 

. Materials and method 

.1. Materials 

Twenty healthy subjects aged from 25 to 55 were included

n this study. The original MR images were acquired with a 7T

iemens scanner (Siemens Healthineers, Erlangen, Germany). Sev-

nteen subjects were acquired using a single channel transmit and

2 channel receive coil (Nova Medical, Wilmington, MA), while

he other three subjects were acquired using 8 channel transmit

nd 32 channel receive coil. The total scan time was around 483

econds. Both T1- and T2-weighted MR images were scanned for
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Fig. 3. An example of the original T2-weighted MR image (at the left-panel) and 

the processed image (at the right-panel) shown in the axial view. The blue cir- 

cles present the effectively enhanced tubular structures via the method proposed 

in Hou et al. (2017) , while the yellow boxes show the lost image information, due 

to the enhancement and denoising procedures. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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ach subject. The T1-weighted MR images were acquired using the

PRAGE sequence ( Mugler and Brookeman, 1990 ) with the spatial

esolution of 0 . 65 × 0 . 65 × 0 . 65 mm 

3 or 0 . 9 × 0 . 9 × 1 . 0 mm 

3 , while

he T2-weighted MR images were acquired using the 3D variable

ip angle turbo-spin echo sequence ( Busse et al., 2006 ) with the

patial resolution of 0 . 5 × 0 . 5 × 0 . 5 mm 

3 or 0 . 4 × 0 . 4 × 0 . 4 mm 

3 .

he reconstructed images had the same voxel sizes as those ac-

uired images, and no interpolation was applied during image re-

onstruction. 

The T2-weighted MR images for all studied subjects are used to

egment PVSs, as PVSs are usually more visible in T2-weighted MR

mages ( Hernández et al., 2013 ). The ground-truth segmentation

as defined cooperatively by an MR imaging physicist and a com-

uter scientist specialized in medical image analysis. Since man-

al annotation is a highly time-consuming task, the whole brain

VS masks were created just for 6 subjects, while the right hemi-

phere PVS masks were created for all the remaining 14 subjects.

ore detailed information about the studied data can be found in

ong et al. (2016) . 

.2. Method 

In this part, the proposed multi-channel multi-scale encoder-

ecoder network (M 

2 EDN) is introduced in detail. First, we de-

cribe the overall network architecture, followed by introduction

f each key module one-by-one. Then, we discuss the training and

esting procedures, including some specific operations to mitigate

evere imbalanced learning issue in our task of PVS segmentation. 

.2.1. Network architecture 

As shown in Fig. 2 , the proposed M 

2 EDN is a variant FCN

odel ( Shelhamer et al., 2016 ) that consists of multiple convolu-

ional layers, pooling layers, and up-sampling layers. Specifically,

t includes an encoder sub-network and a decoder sub-network.

n the encoder sub-network, the blue blocks first perform 64

hannels of 3 × 3 × 3 convolution with the stride of 1 and zero

adding, and then calculate the rectified linear unit (ReLU) acti-

ations ( Krizhevsky et al., 2012 ). Besides, the orange blocks per-

orm 2 × 2 × 2 max pooling with the stride of 2, while the yellow

lock performs 4 × 4 × 4 max pooling with the stride of 4. It can be

bserved that the network inputs are down-sampled three times

n this encoder sub-network, i.e., the included convolutional and

ooling operations are arranged and orderly executed at three de-

reasing resolution levels. In this way, we attempt to comprehen-

ively capture the global contextual information of PVSs by using

he combination of different volumetric operation strategies. 

Symmetric to the encoder sub-network, the subsequent de-

oder sub-network consists of operations arranged at three in-

reasing resolution levels. The blue blocks in this sub-network per-

orm the same convolutional processing as those in the encoder

ub-network, while the followed purple blocks up-sample the ob-

ained feature maps using 2 × 2 × 2 kernels with the stride of 2. At

ach resolution level, a skip connection is included to fuse the up-

ampled feature maps with the same level feature maps obtained

rom the previous encoder sub-network, in order to complemen-

arily combine global contextual information with spatial details

or precise detection and localization of PVSs. The final magenta

lock performs 1 × 1 × 1 convolution and sigmoid activation to cal-

ulate voxel-wise PVS probability maps from high-dimensional fea-

ure maps. 

Both the encoder sub-network and the decoder sub-network

ontain the combination operations (i.e., the symbol � in Fig. 2 )

or the fusion of feature tensors with equal resolution. Multiple al-

ernatives can be applied to this step, e.g., the voxel-wise addition,

oxel-wise averaging, and tensor concatenation. Similar to that in

-Net ( Ronneberger et al., 2015 ), the concatenation operation is
dopted in this paper as it shows overall best performance. The

oefficients of the network shown in Fig. 2 can be learned using

he training images with ground-truth segmentations of PVSs. 

.2.2. Multi-channel inputs 

As illustrated in Fig. 2 , the proposed M 

2 EDN has two comple-

entary input channels. That is, one channel loads the prepro-

essed T2-weighted MR images with high-contrast tubular struc-

ural information, and another channel loads the original T2-

eighted MR images for providing image details that are obscured

uring the preprocessing procedure (i.e., for image enhancement

nd denoising). 

A non-local image filtering method (i.e., BM4D, Maggioni et al.,

013 ) and its variant with Haar-transformation-based line singular-

ty representation ( Hou et al., 2017 ) are adopted to remove noise

nd enhance the thin tubular structures, respectively. More specif-

cally, each original T2-weighted MR image is divided into multi-

le reference cubes with the size of S × S × S . The Haar transforma-

ion is then performed on a group of K nonlocal cubes within a

mall neighborhood (i.e., 3 × 3 × 3) of the center of each reference

ube, based on which the tubular structural information can be ef-

ectively represented in the transformed sub-bands. The transfor-

ation coefficients are then nonlinearly mapped to enhance sig-

als relevant to PVSs. Given the transformation coefficients after

rocessing, the enhanced reference cubes are then reconstructed

y the inverse Haar transformation, which are finally aggregated

ogether as the enhanced T2-weighted MR image. Finally, the en-

anced T2-weighted MR image is further processed by the BM4D

ethod to suppress the remaining noise. 

Fig. 3 shows an example of axial T2-weighted MR slice (i.e., at

he left-panel), as well as the enhanced and denoised counterpart

i.e., at the right-panel). We can observe that the tubular struc-

ures are effectively enhanced in the preprocessed images (e.g., in

he blue circles), while sacrificing some image details (e.g., in the

ellow boxes). In our experiments, two parameters S and K used

n the nonlocal image enhancement were set as 7 and 8, respec-

ively. More information regarding this non-local image enhance-

ent method can be found in Hou et al. (2017) . 

.2.3. Multi-scale feature learning 

To robustly quantify the structural information of PVSs and ad-

acent brain tissues, the proposed M 

2 EDN is designed to learn

ulti-scale features in the encoder sub-network. 
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Input image
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Fig. 4. An illustration of multi-scale feature learning for a 2D input image (with 

the size of 12 × 12) in the proposed encoder sub-network. For the 1st-level feature 

extraction, the orange pixel in the 1st-scale feature map (top) and the blue pixel in 

the 2nd-scale feature map (bottom) correspond to the 4 × 4 orange region and the 

6 × 6 blue region in the input image, respectively. Similarly, for the 2nd-level fea- 

ture extraction, the yellow and purple pixels in the 1st- and 2nd-scale feature maps 

correspond to the 10 × 10 yellow region and the 12 × 12 purple region in the input 

image, respectively. That is, at each feature extraction stage, two complementarily 

feature maps are extracted from the identical center regions to characterize the in- 

put in both a fine scale (i.e., 4 × 4) and a coarse scale (i.e., 6 × 6). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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As shown in Fig. 2 , at the first two decreasing resolution lev-

els (i.e., the 1st-level and the 2nd-level feature extraction), besides

the commonly used modules of convolution plus pooling, the input

images are simultaneously down-sampled first, followed by exe-

cuting of convolutional operations on the down-sampled images.

Specifically, the input images are simply half-sized using 2 × 2 × 2

max pooling with the stride of 2 at the 1st-level feature extraction,

while quarter-sized using 4 × 4 × 4 max pooling with the stride of

4 at the 2nd-level feature extraction. In this way, different scales

of features at each resolution level can be efficiently quantified

in parallel, which are then fused as the input to the subsequent

resolution level. It is also worth noting that this operation is not

applied to the last decreasing resolution, mainly considering that

PVSs are the thin tubular structures which could be invisible after

one-eighth down-sampling. 

An illustration of the above procedure for a 2D input image

(with the size of 12 × 12) is shown in Fig. 4 , where multi-scale fea-

tures are hierarchically learned at two successive feature extraction

stages. At each stage, two different scales of feature representa-

tions are extracted for the input image. For instance, for the 1st-

level feature extraction, the orange pixel in the 1st-scale feature

map (top) is generated by performing 3 × 3 convolution followed

by 2 × 2 max pooling on the 4 × 4 orange region in the input im-

age, while the corresponding blue pixel in the 2nd-scale feature

map (bottom) is generated by performing 2 × 2 max pooling fol-

lowed by 3 × 3 convolution on the 6 × 6 blue region in the input

image. Similarly, for the 2nd-level feature extraction, the yellow

and purple pixels in the 1st-scale and 2nd-scale feature maps cor-

respond, respectively, to the 10 × 10 yellow region and the 12 × 12

purple region in the input image. Note that the 2nd-scale feature

map (bottom) for the 2nd-level feature extraction is generated by

directly performing 4 × 4 max pooling followed by 3 × 3 convolu-

tion on the input image, while the corresponding 1st-scale feature

map (top) is obtained by performing 3 × 3 convolution followed

by 2 × 2 max pooling on feature maps that are produced by the

1st-level feature extraction. Based on the above operations, at each

feature extraction stage, two complementary feature maps are ex-

tracted from the identical center regions to characterize the input

in a fine scale (i.e., 4 × 4) and a coarse scale (i.e., 6 × 6), respec-

tively. 
.2.4. Auto-contextual information 

The strategy of auto-context was first introduced by Tu and

ai (2010) , which was then successfully applied to various tasks of

edical image analysis (e.g., Wang et al., 2015; Chen et al., 2017 ),

howing remarkable performance. The general idea is to adopt

oth the original image and the class confidence (or discrimina-

ive probability) maps generated by a classifier (trained using the

riginal images) for recursively learning an updated classifier to re-

ne the output probability map. This procedure can be repeated

ultiple times until convergence to yield sequential classification

odels. Thus, high-level contextual information can be effectively

ombined with low-level image appearance iteratively to improve

he learning performance. 

Inspired by the idea of this auto-context model ( Tu and

ai, 2010 ), we first train an initial M 

2 EDN model using multi-

hannel input images (i.e., the original and preprocessed T2-

eighted MR images) as the low-level image appearance informa-

ion. Then, besides the two original input channels, the PVS prob-

bility maps produced by this initial M 

2 EDN are also included as

hird input channel (i.e., indicated by a black dotted arrow line in

ig. 2 ) to provide complementary contextual information. This kind

f high-level contextual guidance could provide implicit shape in-

ormation to assist the learning of image features in each convolu-

ional layer, which could facilitate the training and updating of our

etwork for further improving the segmentation results. 

.2.5. Imbalanced learning 

In our segmentation task, there exists a severe class-imbalance

ssue, where the number of voxels in the PVS regions (i.e., pos-

tive observations) is much smaller than that in the background

i.e., negative observations). This real-world challenge hampers the

tability of most standard learning algorithms, since conventional

ethods usually assume balanced distributions or equal misclas-

ification costs (i.e., using simple average error rate) across differ-

nt classes. To deal with this class-imbalance problem, two widely-

sed strategies have been proposed in the literature ( He and Gar-

ia, 2009; Liu et al., 2014; Lian et al., 2016 ), i.e., (1) data rebalanc-

ng, and (2) cost-sensitive learning. In this study, we adopt these

wo strategies in the training phase to ensure the effectiveness of

ur network in identifying the minority PVS voxels from the back-

round. 

In consideration of the generalization capacity of the proposed

 

2 EDN, the diversity of selected training samples is also taken into

ccount during the data rebalancing procedure. More specifically,

raining sub-images in each mini-batch are generated on-the-fly by

ropping equal-sized volumetric chunks, both randomly from the

hole image and randomly from the dense PVS regions within the

mage. In this way, training samples in each epoch not only are di-

ersified but also contain a considerable amount of voxels belong-

ng to the PVSs. Moreover, the training data is in some sense im-

licitly augmented due to this operation, because a large number

f sub-images with partial differences can be randomly sampled

rom a single MR image. 

It is worth noting that a sub-image generated by the above pro-

edure is likely to contain more background voxels than PVS vox-

ls, even we sample densely from PVS regions. To address this is-

ue, we further design a cost-sensitive loss function based on F-

easure for training the proposed network. Let Y = { y i } N i =1 be the

round-truth segmentation for a sub-image consisting of N vox-

ls, where y i = 1 denotes that the i th voxel belongs to the PVSs,

hile y i = 0 the background. Accordingly, we assume ˆ Y = 

{
ˆ y i 
}N 

i =1 
is

he PVS probability map produced by the proposed M 

2 EDN, where

ˆ  ∈ [0 , 1] and i = 1 , . . . , N. Then, the loss function L used in our
i F 
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Fig. 5. A 2D illustration from three different views to describe the procedure of 

generating the testing sub-images. The input image is divided into multiple blue 

blocks that are overlapped with each other. After prediction, only their central 

chunks with yellow dotted boundaries are padded together as the final segmenta- 

tion of the input image. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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etwork can be represented as 

 F = 1 − (1 + β2 ) 
∑ N 

i =1 y i ̂  y i + ε

β2 
∑ N 

i =1 y i + 

∑ N 
i =1 ˆ y i + ε

, (1) 

here ε is a small scalar (e.g., 1e-5) to ensure numerical stability

or calculating the loss value. The tuning parameter β > 0 deter-

ines if precision (i.e., positive prediction value) contributes more

han recall (i.e., true positive rate or sensitivity) during the training

rocedure, or conversely. We empirically set β = 1 , which means

recision and recall have equal importance in the task of PVS seg-

entation. 

.2.6. Implementations 

The proposed networks were implemented using Python based

n the Keras package ( Chollet, 2015 ), and the computer we used

ontains a single GPU (i.e., NVIDIA GTX TITAN 12GB). Training

mages were flipped in the axial plane to augment the available

raining sub-images as well as increase their diversity for bet-

er generalization of trained networks. Using the procedure de-

cribed in Section 3.2.5 , the size of each training sub-image was

6 × 96 × 96, and the size of a mini-batch in each epoch was 2.

he network was trained by the Adam optimizer using recom-

ended parameters. In the testing phase, considering FCNs de-

ire large inputs to provide rich semantic information, each testing

mage was divided into 168 × 168 × 168 sub-images that are over-

apped with each other. After prediction, we only kept segmen-

ation results for the non-overlapped 96 × 96 × 96 central chunks

n the overlapped 168 × 168 × 168 testing sub-images. Finally, the

on-overlapped central chunks were padded together as the out-

ut with equal size to the original testing image. A 2D illustration

f generating the testing sub-images is presented in Fig. 5 . Our

xperiments empirically show that the method keeping only the

on-overlapped central chunks for the final segmentation performs

elatively better than the method preserving also the overlapped

oundaries. It may be because the prediction for the boundaries is

ess accurate than that for the central parts, considering that the

onvolutional layers contain zero-padding operations. 

. Experiments and analyses 

In this section, we first present the experimental settings and

he competing methods, and then compare the segmentation re-

ults achieved by different methods. In addition, we verify the ef-

ectiveness of each key module of the proposed M 

2 EDN via evalu-

ting their influence on the segmentation performance. 
.1. Experimental settings 

Following the experimental settings in Park et al. (2016) , six

ubjects with whole-brain ground-truth masks were used as the

raining samples, while the remaining fourteen subjects with right-

emisphere ground-truth masks were used as the testing samples.

Using manual annotations as the reference, the segmentation

erformance of our method was quantified and compared with

hat of other methods using three metrics, i.e., (1) the Dice similar-

ty coefficient (DSC), (2) the sensitivity (SEN), and (3) the positive

rediction value (PPV), defined as 

SC = 

2 TP 

2 TP + FP + FN 

; (2) 

EN = 

TP 

TP + FN 

; (3) 

PV = 

TP 

TP + FP 

, (4) 

here TP (i.e., true positive) denotes the number of predicted PVS

oxels inside the ground-truth PVS segmentation; scalar FP (i.e.,

alse positive) denotes the number of predicted PVS voxels out-

ide the ground-truth PVS segmentation; scalar TN (i.e., true neg-

tive) represents the number of predicted background voxels out-

ide the ground-truth PVS segmentation; scalar FN (i.e., false nega-

ive) represents the number of predicted background voxels inside

he ground-truth PVS segmentation. 

.2. Competing methods 

We first compared our proposed M 

2 EDN method with a base-

ine method, i.e., a thresholding method based on Frangi’s ves-

elness filtering (FT) ( Frangi et al., 1998 ). Then, we also com-

ared M 

2 EDN with two state-of-the-art methods, including (1) a

raditional learning-based method, i.e., structured random forest

SRF) ( Zhang et al., 2017a ), and (2) the original U-Net architec-

ure ( Ronneberger et al., 2015 ). These three competing methods are

riefly introduced as follows. 

(1) Frangi’s vesselness filtering (FT) ( Frangi et al., 1998 ):

The Frangi’s vesselness filtering method proposed in

Frangi et al. (1998) is a thresholding method. Considering

that PVSs mainly spread in the white matter (WM) region

( Zong et al., 2016 ), the WM tissue in T2-weighted MR im-

age should be extracted first as ROI for reliable vessel de-

tection. Then, all possible thin tubular structures in the ROI

were detected using Frangi’s filter ( Frangi et al., 1998 ) to

generate a vesselness map. Finally, voxels in the ROI with

higher vesselness than a certain threshold were determined

as the PVS voxels. Several vesselness thresholds were tested,

and the optimal thresholds were obtained for different sub-

jects. More details with respect to the segmentation of WM,

the definition of ROI, and the vesselness thresholding can be

found in Park et al. (2016) and Zhang et al. (2017a) . To sum-

marize, FT does not need any label information, and thus is

an unsupervised method. 

2) Structured random forest (SRF) ( Zhang et al., 2017a ): The

structured random forest model using vascular features was

implemented to smoothly annotate PVSs. More specifically,

the ROI for PVS segmentation was defined similarly as that

for the FT method. Then, for each voxel sampled from the

ROI via an entropy-based sampling strategy ( Zhang et al.,

2017a ), three different types of vascular features based on

three filters (i.e., steerable filter ( Freeman et al., 1991 ),

Frangi’s vesselness filter ( Frangi et al., 1998 ), and optimally
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Table 1 

The average ( ± standard deviation) performance, in terms of DSC, 

SEN, and PPV, obtained by different methods on the training set. 

FT SRF U-Net M 

2 EDN 

DSC 0.51 ± 0.05 0.68 ± 0.03 0.70 ± 0.07 0.77 ± 0.04 

SEN 0.54 ± 0.16 0.66 ± 0.05 0.64 ± 0.14 0.73 ± 0.11 

PPV 0.56 ± 0.12 0.71 ± 0.03 0.81 ± 0.07 0.84 ± 0.07 

Table 2 

The average ( ± standard deviation) performance, in terms of DSC, 

SEN, and PPV, obtained by different methods on the testing set. 

FT SRF U-Net M 

2 EDN 

DSC 0.53 ± 0.08 0.67 ± 0.03 0.72 ± 0.05 0.77 ± 0.06 

SEN 0.51 ± 0.10 0.65 ± 0.04 0.77 ± 0.08 0.74 ± 0.12 

PPV 0.62 ± 0.08 0.68 ± 0.04 0.70 ± 0.10 0.83 ± 0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The average ( ± standard deviation) testing performance, in terms of 

DSC, SEN, and PPV, obtained by the mono-channel and multi-channel 

M 

2 EDN. M 

2 EDN-O and M 

2 EDN-P denote, respectively, the mono- 

channel M 

2 EDN using solely the original images and solely the prepro- 

cessed images. 

M 

2 EDN-O M 

2 EDN-P M 

2 EDN 

DSC 0.73 ± 0.04 0.72 ± 0.09 0.77 ± 0.06 

SEN 0.78 ± 0.09 0.67 ± 0.14 0.74 ± 0.12 

PPV 0.71 ± 0.10 0.81 ± 0.06 0.83 ± 0.05 
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oriented flux ( Law and Chung, 2008 )) and the correspond-

ing cubic label patches were extracted to train a SRF model

(with 10 independent trees, each having the depth of 20).

That is, the SRF method is a supervised method, requiring

label information for training image patches. 

3) U-Net ( Ronneberger et al., 2015 ): It should be noted that

the original U-Net is a simplified version of the proposed

M 

2 EDN, without using multi-channel inputs and multi-

scale feature learning. For fair comparison, the two learning

strategies (i.e., data resampling, and cost-sensitive learning)

introduced in Section 3.2.5 to deal with class-imbalanced

problem were also applied to the U-Net. Besides, U-Net and

our proposed M 

2 EDN share the same size of sub-images in

both the training and testing procedures. 

4.3. Result comparison 

The quantitative segmentation results obtained by our M 

2 EDN

method and the three competing methods, on both the train-

ing and testing images, are reported in Tables 1 and 2 . From

Tables 1 and 2 , we have the following observations. First , com-

pared with the conventional unsupervised method (i.e., FT) and

supervised method (i.e., SRF), two deep learning-based methods

(i.e., U-Net, and our M 

2 EDN method) achieve better results in PVS

segmentation in terms of three evaluation criteria (i.e., DSC, SEN,

and PPV). This implies that incorporating feature extraction and

model learning into a unified framework, as we did in M 

2 EDN,

does improve the segmentation performance. The possible rea-

son could be that the task-oriented features automatically learned

from data are consistent with the subsequent classification model,

while the hand-crafted features used in SRF are extracted indepen-

dently from the model learning. Second , the proposed M 

2 EDN out-

performs the original U-Net, mainly due to the use of three key

modules in the proposed method, i.e., the complementary multi-

channel inputs, the multi-scale feature learning strategy, and the

auto-contextual information provided by the initial PVS probability

maps. In particular , the proposed M 

2 EDN method usually achieves

superior SEN values in most cases, suggesting that our method can

effectively identify PVS regions from those large amounts of back-

ground regions. Moreover , by comparing results on the training im-

ages (i.e., Table 1 ) with those on the testing images (i.e., Table 2 ),

we can also find that the proposed M 

2 EDN generalizes well in this

experiment. 

The corresponding qualitative comparison is presented in Fig. 6 .

As can be seen, the automatic segmentations obtained by the pro-

posed M 

2 EDN are more consistent with the manual ground truth

in these examples, especially for the relatively low-contrast PVSs

indicated by the yellow arrows and ellipses. 
.4. Module analyses 

In this subsection, we evaluate the effectiveness of each key

odule of the proposed M 

2 EDN via assessing their influence on

he segmentation performance. 

.4.1. Role of multi-channel inputs 

To assess the effectiveness of multi-channel inputs, we removed

ne source of input images, and then trained the mono-channel

etworks in the same way as that for the multi-channel network.

pecifically, the quantitative results produced by our method us-

ng only the original images (denoted as M 

2 EDN-O), only the pre-

rocessed images (denoted as M 

2 EDN-P), and the multi-channel

nputs (i.e., M 

2 EDN using both the original and preprocessed im-

ges) are compared in Table 3 . It can be found from Table 3 that

oth M 

2 EDN-O (using solely the original images) and M 

2 EDN-P

using solely the preprocessed images) obtain similar overall ac-

uracy (i.e., DSC), where the former one and the latter one lead

o better SEN and PPV, respectively. On the other hand, M 

2 EDN

sing both the original and the preprocessed images further im-

roves the performance, by effectively combining the complemen-

ary information provided by the two different channels during the

earning procedure. 

Two example images segmented via M 

2 EDN-O, M 

2 EDN-P, and

 

2 EDN are visualized in Fig. 7 , which are consistent with the

uantitative results shown in Table 3 . From the results presented

n Table 3 and Fig. 7 , we can observe that combining the original

mage with the preprocessed image can effectively improve the au-

omatic annotation, compared with the case of using only one in-

ut image only, e.g., for the regions marked by the yellow circles

n Fig. 7 . 

.4.2. Role of multi-scale features 

As one main contribution of this paper, the proposed M 

2 EDN

ethod extends the original U-Net by including the complemen-

ary coarse-scale feature extraction steps (i.e., the 2nd-scale fea-

ure extraction as shown in Fig. 2 ) in the encoder sub-network.

o demonstrate its effectiveness, we removed the 2nd-scale fea-

ure extraction from the network to form a mono-scale version

f the proposed M 

2 EDN (denoted as M 

2 EDN-S). Then, we further

ncreased the depth of M 

2 EDN-S (by adding additional pooling,

onvolutional, and up-sampling layer) to ensure that its network

omplexity is comparable to that of M 

2 EDN. The architecture of

 

2 EDN-S can be found in Fig. S1 of the Supplementary Materi-

ls . We should note that M 

2 EDN-S is still different from the orig-

nal U-Net, since multi-channel inputs are used in M 

2 EDN-S. Us-

ng the same experimental settings, the testing results obtained by

 

2 EDN-S are compared with those by M 

2 EDN in Table 4 . As can

e seen, the multi-scale feature learning procedure effectively im-

roves the overall segmentation performance, especially in terms

f SEN and PPV, which means that false positive and false negative

etections are partially reduced. 

As a qualitative illustration, two automatic segmentations pro-

uced, respectively, by M 

2 EDN-S and M 

2 EDN are visually com-

ared in Fig. 8 . Regarding the manual annotation as the reference,
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Original image FT SRF Ground truthU-Net M2EDN

Fig. 6. Illustration of PVS segmentation achieved by four different methods, with each row denoting a specific subject. The first column and the last column denote, 

respectively, the original images and the ground truth annotated by experts. The yellow ellipses and arrows indicate low-contrast PVSs that can be still effectively detected 

by the proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Original image Preprocessed image M2EDN-O Ground truthM2EDN-P M2EDN

Fig. 7. Illustration of segmentations obtained by the mono-channel network using the original image (i.e., M 

2 EDN-O), the mono-channel network using the preprocessed 

image (i.e., M 

2 EDN-P), and the multi-channel network (i.e., M 

2 EDN). The yellow circles indicate improved segmentations due to the use of complementary multi-channel 

inputs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

The average ( ± standard deviation) performance, in terms of DSC, SEN, 

and PPV, obtained by the mono-scale feature learning strategy (i.e., 

M 

2 EDN-S) and multi-scale feature learning strategy (i.e., M 

2 EDN) for 

the eleven testing images. 

M 

2 EDN-S M 

2 EDN 

DSC 0.74 ± 0.08 0.77 ± 0.06 

SEN 0.70 ± 0.13 0.74 ± 0.12 

PPV 0.81 ± 0.06 0.83 ± 0.05 
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e can observe that M 

2 EDN leads to more accurate segmentation

han M 

2 EDN-S. For instance, the multi-scale feature learning strat-

gy effectively removed false negative detections marked by the

ellow circles. 
It is also worth noting that multi-scale feature learning is ben-

ficial for the original U-Net as well, even when we use only the

ono-channel input to train the network. Specifically, M 

2 EDN-O

ntroduced in Section 4.4.1 is actually a variant of U-Net using

he proposed multi-scale feature learning strategy. By comparing

he results achieved by M 

2 EDN-O shown in Table 3 with those

chieved by the original U-Net shown in Table 2 , we can observe

hat the proposed multi-scale feature learning strategy does im-

rove the segmentation performance of the original U-Net (i.e., av-

rage DSC is increased from 0.72 to 0.73). 

Similarly, we can regard M 

2 EDN-S as a variant of U-Net that

ses multi-channel inputs. By comparing the results obtained by

 

2 EDN-S shown in Table 4 with those obtained by the original

-Net shown in Table 2 , we can observe that the multi-channel

nputs are also beneficial for the original U-Net (i.e., average DSC
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Original image Ground truth

M2EDN-S M2EDN

Fig. 8. Illustration of segmentations obtained by the proposed method with mono- 

scale feature learning (i.e., M 

2 EDN-S) and multi-scale feature learning (i.e., M 

2 EDN), 

respectively. The yellow circles indicate that the multi-scale feature learning strat- 

egy can effectively remove false positive detections produced by M 

2 EDN-S. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

0.5

0.6

0.7

0.8

0.9

DSC SEN PPV

No auto-context With auto-context

Fig. 9. The average ( ± standard deviation) testing performance, in terms of DSC, 

SEN, and PPV, obtained by the proposed method with or without auto-context in- 

formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original image Ground truthNo auto-context With auto-context

Fig. 10. Illustration of segmentations obtained by the proposed M 

2 EDN with or 

without auto-context information. The yellow arrows and the blue circles indicate, 

respectively, the refined PVS annotations and additional false positives, both due to 

the use of auto-context strategy. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

0.5

0.6

0.7

0.8

0.9

DSC SEN PPV

Random sampling Balanced sampling

Fig. 11. The average ( ± standard deviation) testing performance (in terms of DSC, 

SEN, and PPV) obtained, respectively, by a random sampling strategy and the pro- 

posed balanced sampling strategy. 
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is improved from 0.72 to 0.74). This observation is consistent with

the results shown in Table 3 and thus supports our previous dis-

cussion in Section 4.4.1 . 

4.4.3. Role of auto-contextual information 

In the proposed method, our empirical studies show that learn-

ing sequential networks in multiple iterations brings few improve-

ments with relatively large price. To this end, the auto-contextual

information was used only once in our experiment, i.e., the initial

network was trained using the multi-channel inputs of the origi-

nal and preprocessed T2-weighted MR images, and then the output

probability maps were combined with the input images to train

the subsequent network as the final M 

2 EDN model. 

The quantitative testing results obtained by the networks

trained with and without the auto-contextual information are

compared in Fig. 9 . It can be seen that the use of auto-context

strategy further refines the average DSC (from 0.76 ± 0.07 to

0.77 ± 0.06). More specifically, it makes an adjustment or a com-

promise between SEN (from 0.70 ± 0.12 to 0.74 ± 0.12) and PPV

(from 0.85 ± 0.06 to 0.83 ± 0.05), to improve the overall segmenta-

tion performance. Implicitly, the role of the auto-context strategy

can be interpreted as to improve the output segmentations glob-

ally by enhancing the input probability maps (i.e., improving true
ositive detections), though it may bring additional false positives

o some extent. 

As an example, two qualitative illustrations obtained by the

roposed method with and without the auto-contextual informa-

ion are shown in Fig. 10 , where the yellow arrows and the blue

ircles indicate the refined PVS annotations and additional false

ositives, respectively. We can notice that multiple PVSs with rel-

tively low contrast are detected by adding auto-contextual infor-

ation (indicated by yellow arrows), while few false positive de-

ections (indicated by blue circles) are included simultaneously.

verall, the use of auto-context strategy can improve the segmen-

ation based on the contextual information provided by the proba-

ility maps. 

.4.4. Role of balanced data sampling 

The proposed method adopts a balanced data sampling strategy

nd an F-measure-based loss function to mitigate the influence of

lass-imbalance challenge on PVS segmentation. As an example to

erify its effectiveness, we performed another experiment to train

ur network using sub-images generated on-the-fly by randomly

ropping overlapped chunks from the whole image. Using 6 sub-

ects with the whole-brain ground truth for training while using

he remaining subjects for testing, the quantitative testing results

btained by this random sampling strategy was compared with

hose obtained by the balanced sampling strategy. Based on the

esults presented in Fig. 11 , we can observe that the balanced data

ampling leads to much better quantitative performance, especially

igher SEN (from 0.67 ± 0.13 to 0.74 ± 0.12 ), i.e., less false negatives ,

han the general random sampling, which reflects the effectiveness

f the employed data sampling strategy. 
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0.5

0.6
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0.8

Whole brain Right hemisphereSame coil Different coil

U-Net M2EDN-O M2EDN-P M2EDN-S M2EDN

(a) (b)

D
SC

0.6

0.65

0.7

0.75

0.8

Fig. 12. (a) The quantitative segmentation performance (in terms of DSC) for the testing images acquired using the coils identical to or different from the training images. 

(b) The quantitative testing results (in terms of DSC) obtained by the networks trained using, respectively, the images with whole-brain ground truth and the images with 

right-hemisphere ground truth. 
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. Discussions 

In this section, we present some discussions about the robust-

ess and generalization of the proposed method. As a part of our

tudy in the future, we also indicate some limitations and open

ooms for the current method. 

.1. Network training and generalization 

Multiple operations were adopted in this paper to ensure effec-

ive training of deep neural networks from relatively small-sized

ata with severe class-imbalance issue. Specifically, an F-measure-

ased cost-sensitive loss was used together with a balanced data

ampling strategy to deal with the class-imbalance issue. The data

ampling strategy could also partly mitigate the challenge caused

y small-sized data, since a large amount of training sub-images

ith considerable diversities can be generated from a single im-

ge or the corresponding axial-plane-flipped image. The outputs

f the initial network were further used as an additional input

hannel for the training of an updated network, considering they

an provide auto-contextual information to guide the training pro-

ess to obtain a more accurate segmentation model. The quanti-

ative evaluation presented in Fig. 11 has demonstrated that the

lass-imbalance issue was effectively limited by the imbalanced-

earning strategies. The comparison between the experimental re-

ults in the last column of Tables 1 and 2 has shown that, overall,

he trained networks can be generalized well, as comparable seg-

entation performance can be obtained on both the training and

esting subjects. Also, the evaluation presented in Fig. 9 has shown

hat the auto-context strategy can help to refine the final segmen-

ation. To further verify the generalization of our trained networks,

e performed additional evaluations as follows. 

First , using 6 subjects with whole-brain ground truth as the

raining set, we divided the remaining 14 subjects as two testing

roups by checking if their scanning coils were the same as those

f the training set. The quantitative segmentation results obtained

y U-Net, M 

2 EDN-O, M 

2 EDN-P, M 

2 EDN-S, and M 

2 EDN on the two

esting groups are then compared in Fig. 12 (a). We can find that

he proposed M 

2 EDN has better performance than its variants (i.e.,

 

2 EDN-O, M 

2 EDN-P, and M 

2 EDN-S) and U-Net on both testing

roups. In addition, although the proposed method has better seg-

entation accuracy on the testing images acquired using the same

oil as the training images, the difference between the two testing

roups is not large. 

Second , we reversed the data partition to train the networks

sing 14 subjects that have only right-hemisphere ground truth,

nd then evaluated the trained networks on 6 testing subjects with

hole-brain ground truth. It is worth noting that this task is rel-

tively challenging, since the training set does not contain sub-

mages from the left hemisphere. In Fig. 12 (b), the segmentation
erformance of the proposed M 

2 EDN is compared with that of U-

et, M 

2 EDN-O, M 

2 EDN-P, and M 

2 EDN-S. It can be found that the

roposed method still outperforms the original U-Net architecture.

n addition, the multi-channel inputs and the multi-scale feature

earning are still beneficial for the proposed method, as M 

2 EDN has

etter performance than its variants (i.e., M 

2 EDN-O, M 

2 EDN-P, and

 

2 EDN-S). On the other hand, we should also note that M 

2 EDN

rained on the whole brain images has better performance than

hat trained on the right hemisphere images. This is intuitive and

easonable, given the fact that more comprehensive data has been

sed for training the network in the former case. 

The above discussions and evaluations demonstrate that the

roposed M 

2 EDN generalized relatively well in our experiments.

n addition, it also indicates that, including more training images

ith wide range of diversity is expected for further improving the

erformance of the proposed M 

2 EDN. 

.2. Network architecture 

Fully convolutional networks, e.g., U-Net, greatly improve

he accuracy of automatic image segmentation, mainly due to

ask-oriented feature learning, encoder-decoder architectures, and 

eamless fusion of semantic and local information. For example,

he quantitative experimental results presented in Table 2 have

hown that U-Net and the proposed M 

2 EDN can produce more

ccurate segmentation of PVSs than the traditional learning-based

ethods. Our M 

2 EDN extended U-Net by including multi-channel

nputs and multi-scale feature learning. The analyses presented

n Sections 4.4.1 and 4.4.2 have demonstrated that these modifi-

ations to the original U-Net architecture are beneficial, as more

omprehensive information regarding PVS and surrounding brain

issues can be extracted to guide the training of an effective seg-

entation network. 

Multiple operations have also been used in the literature to re-

ne the final segmentations produced by deep neural networks.

or example, in Kamnitsas et al. (2017) , a fully connected condi-

ional random field (CRF) was concatenated with multi-scale CNN

or segmentation of brain lesions. In Chen et al. (2017) , the auto-

ontext strategy was used to develop sequential residual networks

or segmentation of brain tissues. Inspired by the auto-context

odel ( Tu and Bai, 2010 ) and similar to Chen et al. (2017) , our

 

2 EDN implemented two cascaded networks, where the outputs

f the initial network were used as high-level contextual knowl-

dge to train an updated network for more accurate PVS segmen-

ation. It is worth noting that, using auto-context and using CRF

o refine deep neural networks are distinct in principle. The for-

er strategy updates directly the parameters of trained networks,

hich means the image features learned by the intermediate layers

re further refined with respect to the high-level contextual guid-

nce. However, the latter strategy refines solely the output seg-
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Original image Ground truthPreprocessed image Detected PVSs

Fig. 13. Illustration of typical failed segmentations produced by the proposed 

method. The failed segmentations are indicated by yellow arrows. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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mentation, which is independent of the updating of trained net-

works. 

5.3. Limitations of current method 

While the proposed M 

2 EDN obtained competitive segmentation

accuracy compared with the state-of-the-art methods, there are

still some rooms for further improvement. 

Fig. 13 presents some typical failed segmentations. (1) The pro-

posed method may fail to detect PVSs with very low contrast

(compared with the adjacent brain tissues), especially when the

weak PVSs were not effectively enhanced or even removed in the

preprocessed image (e.g., the first row in Fig. 13 ). One direct way

to overcome such difficulty is to adaptively determine the param-

eters for the tubular structure enhancement method ( Hou et al.,

2017 ) to pay more attention to these weak PVSs. (2) The proposed

method may fail to completely detect thick PVSs with inhomoge-

neous intensities along the penetrating direction (e.g., the second

row in Fig. 13 ). Potentially, we may need to find an appropriate

way to include some connectivity constraints to guide the training

of our network. (3) Sometimes the proposed method may produce

some false positive detections, e.g., the false recognition of a sep-

arate ventricle part as PVS in the last row of Fig. 13 . To reduce

such kind of false positives, including accurate white matter mask

to refine the segmentation is needed, considering that PVSs largely

exist in the white matter. 

While the auto-context strategy could provide high-level con-

textual guidance to refine the final segmentation, it inevitably in-

creased the training and testing complexity, as the input images

should go through at least two cascaded networks. An alternative

way to more efficiently improve the final segmentation is to lo-

calize and focus more on “hard to segment” voxels during the it-

erative training of a single network. In other words, the data sam-

pling strategy may be adjusted along the training process to extract

more training sub-images from “hard to segment” regions. 

6. Conclusion 

In this study, we have proposed a multi-channel multi-scale

encoder-decoder network (M 

2 EDN) to automatically delineate PVSs

in 7T MR images. The proposed method can perform an efficient

end-to-end segmentation of PVSs. It adopts the complementary
ulti-channel inputs as well as multi-scale feature learning strat-

gy to comprehensively characterize the structural information of

VSs. The auto-context strategy is also used to provide additional

ontextual guidance for further refining the segmentation results.

he experimental results have shown that the proposed method

s superior to several state-of-the-arts. Moreover, the proposed

 

2 EDN method can be further improved in the future from multi-

le aspects, e.g., (1) it will be valuable to include vesselness maps

nd connectivity constraints into the network to provide additional

uidance for further reducing the false negative predictions; (2) it

ill be meaningful to further extend the current multi-scale fea-

ure learning strategy to enrich the scales of learned features for

ore comprehensive characterization of the structural information

f PVSs; (3) it is desirable to collect more subjects with 7T MR im-

ges to further verify the performance of the proposed method, as

ell as to develop deeper and more discriminative networks for

VS segmentation. 
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